AEROSOL global distributions

Stefan Kinne, MPI-Meteorology

maps

- to address globally varying (atmospheric)
 properties I (we all) like MAPS
 - more informative than global averages
- Bill & Co has done this for clouds ...
 - so this could also be done for aerosol
- Bill & Co used satellite data and smart models
 - and this also has been done for aerosol

AOD – diversity in satellite remote sensing

same year ... but different answers, coverage, models

what we really want

- complete coverage
 - satellite retrievals fail at times (e.g. over snow)
- address not just aerosol amount (e.g. AOD), but also aerosol size (FMF) and absorption (AAOD)
 - satellite retrieval mainly address AOD, FMF at best over oceans, and absorption at best in a qualitative sense (e.g. UV aerosol index)
- high accuracy & property consistencies
 - satellite retrievals make different assumptions and are handicapped by a poor background
- MAC (now version 2) !

MAC v2

Max-Planck-Aerosol Climatology

use

for mid-visible aerosol properties

» AOD, AAOD, FMF, Angstrom

- high accuracy of AERONET / MAN
- spatial context from modeling

- merge multi-year monthly statistics

for vertical distribution (fine & coarse) for anthrop. fraction of fine (function of time)

MACv2

(div by 2)

means

satellite AOD biases

if we believe MACv2 (not specific for year 2008 though)

MACV2 - AOD and AAOD by size-mode

fine-mode coarse mode

fine
AAOD
(10 times)
70%

Radiative impacts - here we are

direct radiative effects - 2005

solar +IR

solar only

anthropogenic

clr-sky surf

all-sky TOA

all-sky surf

0.0000

30.00

W/m2

indirect forcing?

we tried it 2 ways ... almost identical result

- assuming that the Twomey effect only matters
 - more CCN from anthr. aerosol → more CDNC in water clouds → more cloud solar reflection
 - existing CDNC (natural) background matters

complex: use a vertical distribution, assume SS (.1%), determine CCN

simple: use AODf CDNC relations of MODIS and ATSR retrievals

2005 indirect anthrop forcing

-0.8 W/m2

aerosol forcing - 1965 to 2025

direct indirect total

aerosol forcing highlights

- aero forcing has not changed much since 1985
 - regional shift though: US/EU → SE-Asia
- indirect (cloud effects) dominate TOA response
 -0.8 W/m2 (indirect) -0.2 W/m2 (direct)
- aerosol absorption dominate the atm heating
 -1.1 W/m2 (direct)
- AOD dominate the response at the surface
 -1.3 W/m2 (direct)
- strong spatial (and also seasonal) variability

BC forcing - 2005

total BC

anthrop BC

AOD-fields

- anthrop BC effects
 - TOA forcing +0.35 W/m2
 - atm forcing +0.95 W/m2

summary

- all aerosol properties are highly variable
 - different sources, short lifetime, transport
- although global averages are given ...
 - maps display diversity (e.g. source regions)
- regional impacts are often an order of magnitude larger than global averages
 - the indirect global aerosol forcing is -.2 W/m2 regional responses range from -6 to +6 W/m2

finally Bill

- didn't we all hate to get interrupted during presentations by Bill ...
 - sometimes valid, sometimes for his pleasure
- but there is also a gentler & constructive side
 - ... once you get to know him
- in that way his resembles his 'German twin'
 - unfortunately also in terms of recent health issues
- so ...with wishes from Ehrhard
 - get well! ... and
 - keep challenging us!

Max-Planck Aerosol Climatology

ftp ftp-projects.zmaw.de/aerocom/climatology/MACv2_2017

- 1x1 deg global, monthly, aerosol opt. properties
- capturing today's average properties for
 - column amount ('attenuation')
 - column absorption ('composition')
 - particle 'size' information FMF, Angstrom
 - how? combine!
 - quality statistics from sun-photometer data
 - completeness from bottom-up modeling

relying on OBSERVATIONS of AERONET and MAN plus background from modeling (no direct use of satellite data)

why MAC?

- ... climate studies require aerosol rad. properties
- simulations from global modeling
 - accuracy suffers from input and complexity
 - time-consuming
- prescription by a climatology (e.g. MAC)
 - direct link to observations
 - fast (and simple to implement)

while the climatology can be a nice option in many applications ... the reliance on context from global modeling underlines to importance on advancements in detailed aerosol modeling

use observations if you can

FMF

ANG (div by 2)

annual means

AAOD (10 times)

AOD

complete modeling

FMF

ANG (div by 2)

annual means

extended with model context → MACV2

particularly useful with extra help

- to make it useful for climate applications
 - anthropogenic fraction
 - -fine-mode only (no anthrop dust)
 - temporal variability (seasonality)
 - temporal variability (inter-annual)
 - only anthrop AOD change (const coarse-m.)
 - spectral variability
 - vertical distribution
 - microphysics (fine-mode size → CCN conc.)
 - changes to low cloud properties

ver.2 vs ver.1 (what changed?)

- merge absolute quantities, now in two steps
 - not relative properties (SSA, FMF, ...)
- use MAN data over oceans
 - reduced dep. on modeling
- use a different (higher) PI fine-mode state
 - anthropogenic AOD dropped by 30%
- outcome
 - AOD remains similar, but anthrop AOD smaller
 - AAOD is much stronger
 - less direct forcing (-0.5W/m² to -0.2Wm²)

recent Ver.2 update (what changed?)

- better absorption attribution to size-modes
 - allows now to quantify aerosol components

AOD by components

AOD SSA ASY rad. transfer needs

AOD SSA ASY rad. transfer needs

dir rad. impacts

changing impact on surf net fluxes

1985 clr-sky

with **ISCCP** Clouds

final slide

update for MACv2 is available

ftp ftp-projects.zmaw.de/aerocom/climatology/MACv2_2017

- next monthly pdf in place of single value
- considering changes in fine-absorption
- for specific spectral data needs: contact me
- forcing (and rad.effects)
 - indirect (via clouds) eff.s most import at TOA
 - direct effects most imp. in atm and at surface
 - over the last decades the aerosol induced reductions to on surface net-fluxes increased

fit properties to pre-defined Components

OC org. carb

SU

sulfate

DU

dust

SS

seasalt

coarse mode spectral

anthr. / fine mode spectral

direct rad.effects overview 2005

direct anthrop TOA effect

indirect anthrop TOA effect

TOA components 2005

atm components 2005

surface components 2005

forcing over time

TOA - 1985 vs 2005

atm - 1985-2005

rad transfer simulations

'all components' minus 'all without BC'

